Tackling the CyberThreatA Global IT SolutionProvider Perspective

Philippe-Emmanuel Maulion

11

11

WHAT ARE WE GOING TO COVER

- Who is SITA?
- Aviation Transport Industry (ATI) threat landscape
- Cyber Threat Intelligence: Type and Sources
- Applying Threat Intel. to the Attacker Lifecycle
- In Conclusion...

GLOBAL IT SOLUTIONS & SERVICES PROVIDER TO THE ATI

We work with:

Airlines

Ground Handlers

Airports

Air

Control

Aerospace Traffic

Air

Travel Distribution

Key facts:

- 400+ Members
- 4,700 staff
- 140 nationalities
- >60 languages ٠
- Nearly every passenger ٠ trip relies on our technology and/or services

And we're global

Airports – presence

>90% The world's airlines

WE CONNECT air transport industry sites

Countries and territories served

THE THREAT LANDSCAPE

THREAT LANDSCAPE Aviation is targeted

Motivated, sophisticated and targeted attacks are evident across the expanse of the global air transport industry

CYBERSECURITY IN THE ATI A Business Issue

- Sophisticated and targeted attacks are evident across the ATI e.g. Airlines, Aircraft Manufacturers, Airports, etc.
- 'Aviation and defence firms are likely to remain top targets of cyber espionage activity' (Mandiant Apr. 16)
- Cybersecurity to remain a Top Management Issue (ACI April 2016)
- Sec. researchers' work points towards increasingly destructive and disruptive attacks
- Cybersecurity related expenditure forecasted to grow 8.3% CAGR through 2020
- Increase interconnectivity within the industry e.g. e-Aircraft, smart airports, IoT augment risks

Leveraging Cyber Threat Intel. to inform response activities

ADVERSARIES ARE (SMART) PEOPLE NOT SYSTEMS... THEY PURSUE GOALS

Managing the Threat Leverage Threat Intelligence

- Military-style intelligence applied to cyber
- Government-level 'apparatus'
- Structured
- Years of best practice
- Intelligence reports (mainly) for operational decision making and to inform policy

- Corporate-style IT security approach to threat intel
- Blinky boxes, firewalls, IDS, IR, etc.
- Ad-hoc
- · Inventing practice as we go
- Intelligence reports (mainly) for pretty dashboards to management to justify budget

Threat intelligence types and Sources

OSINT Open Source Intelligence

- Derived from open sources (e.g. mainstream media, Internet forums, paste sites, etc.
- · Pros: good for 'context' and 'big picture'
- Cons: multiple languages, interpretation, noise

TECHINT Technical Intelligence

- Technical indicators (e.g. IP addresses, hashes, domains, tools & techniques)
- **Pros:** easy to consume and drive automation
- Cons: difficult to 'contextualize'

SIGINT Signals Intelligence

- Derived from analysis of communications, often in one's own environment
- **Pros:** low noise; if you're seeing it, you're experiencing it
- Cons: requires extensive apparatus

Cyberattack lifecycle

- Describes the stages that an adversary must go through in order to realize their goals against their target(s).
- From defender's point of view, represents the many ways we can disrupt the adversary

- Paste sites and underground forums can be rich sources of information
- Perform your own reconnaissance... what can you find about you?

TECHINT

- · IP addresses of adversary command-and-control infrastructures
- E-mail addresses of targeted staff members
- Your own external footprint... what's out there vs. what we *thought* was out there?
- Proactively look for vulnerabilities and technical weaknesses

- Target lists of IP addresses, domain names, email addresses, etc. to feed monitoring
- Discover 'rogue' or 'shadow IT' services to determine where security monitoring / response coverage gaps might exist

- Attacker's tools, techniques and procedures (TTPs) may have been reported (semi) publicly
- Security researchers posting proof-of-concept code
- Adversaries sometimes let their code slip!

TECHINT

- Many attacks leverage known tools... so why not acquire them?
- What fingerprints can identify a tool, or technique?

- Download attacker tools: maybe work with your pentesting team and build detections for common tools (e.g. mimikatz, PowerShell Empire, etc.)
- Proof-of-concept code can help highlight where vulnerability exists... can inform business proactively of need to be vigilant

- Research delivery mechanisms
- Malware reports, reverse engineering write-ups, etc.

TECHINT

- Malware signatures, hashes
- IP addresses of delivery mechanisms

SIGINT

- Monitor incoming email
- Enable a reporting mechanism for staff to report malicious email

APPLICATIONS

- Ingest high-confidence intel into defensive controls, like firewalls, IDS/IPS, etc.
- Tune email infrastructure to detect/block known delivery mechanisms

| SITA Aviation Cybersecurity Symposium - Dubai | Confidential | © SITA 2017

TECHINT

- Attacker TTPs
- Malware signatures
- Exploitation fingerprints (e.g. file/registry artifacts, etc.)

SIGINT

- AV detections
- IDS detections
- SIEM / other monitoring detections

- Malware signatures may enable 'hunting' for other infected systems
- Can initiate Incident Response with information about where to start looking
- Assist in helping to 'scope' the incident

TECHINT

- IP addresses of command-and-control
- C2 domains
- C2 communications protocol details

SIGINT

Outbound communication to C2 (e.g. beaconing)

- Create detections for certain C2 traffic patterns
- · Potentially 'spy' on C2 traffic to understand what attackers activity is
- Possible use for blocking & tackling; disrupt C2?
- Further identify scope of a potential incursion

- Attacker data dumps aka 'loot'
- Attempts to sell or fence data (cash out)
- Boasting & bragging

TECHINT

- Details of exfiltration methods
- Forensic artifacts

SIGINT

- Attacker 'fingerprints'
- C2 and exfiltration communications

- Credentials of compromised users can alert and take action (e.g. password reset)
- Clearer view of what extent of compromise may be (e.g. data accessed or modified)
- Input to 'remediation activities' to block the attacker

- Uncover persistence mechanisms and approaches (through research)
- Identify C2 infrastructure

SIGINT

- Compare activity against baseline 'normal'
- Use of common tools, by uncommon users of those tools (e.g. psexec, PowerShell, etc.)

- Pinpoint 'hotspots' to investigate for signs of malicious activity
- Round-out identification of all access mechanisms ready for remediation

Overarching goals:

- support informed decision making; clarify the risk landscape
- prevent or decrease the time to detect an attack
- augment incident response capability; facilitate investigation of an attack
- improve information security management practices

3 points in conclusion

The cybersecurity threat is real, co-ordinated and happening now – across all industries

2

Cybersecurity intelligence can help individual organisations address and respond to threats,

Industry-wide shared intelligence is most helpful to protect our industry

Get involved... share your cyber threat intelligence

