Tackling the Cyber Threat
A Global IT Solution Provider Perspective
Philippe-Emmanuel Maulion
WHAT ARE WE GOING TO COVER

- Who is SITA?
- Aviation Transport Industry (ATI) threat landscape
- Cyber Threat Intelligence: Type and Sources
- Applying Threat Intel. to the Attacker Lifecycle
- In Conclusion…
GLOBAL IT SOLUTIONS & SERVICES
PROVIDER TO THE ATI

Key facts:
• 400+ Members
• 4,700 staff
• 140 nationalities
• >60 languages
• Nearly every passenger trip relies on our technology and/or services

We work with:
- Airlines
- Airports
- Air
- Governments
- Ground Handlers
- Air Traffic Control
- Aerospace
- Travel Distribution

And we’re global

1,000
Airports - presence
>90%
The world’s airlines
>135
Countries have a SITA presence

WE CONNECT
13,500
air transport industry sites
200
Countries and territories served
THE THREAT LANDSCAPE
Motivated, sophisticated and targeted attacks are evident across the expanse of the global air transport industry.
Sophisticated and targeted attacks are evident across the ATI e.g. Airlines, Aircraft Manufacturers, Airports, etc.

‘Aviation and defence firms are likely to remain top targets of cyber espionage activity’ (Mandiant Apr. 16)

Cybersecurity to remain a Top Management Issue (ACI April 2016)

Sec. researchers’ work points towards increasingly destructive and disruptive attacks

Cybersecurity related expenditure forecasted to grow 8.3% CAGR through 2020

Increase interconnectivity within the industry e.g. e-Aircraft, smart airports, IoT augment risks
RESPONDING TO THE THREAT

Leveraging Cyber Threat Intel. to inform response activities
ADVERSARIES ARE (SMART) PEOPLE NOT SYSTEMS… THEY PURSUE GOALS

IT’S A “WHO,” NOT A “WHAT”

A HUMAN IS AT A KEYBOARD
HIGHLY TAILORED AND CUSTOMIZED ATTACKS
TARGETED AT THE VICTIM

THEY ARE PROFESSIONAL, ORGANIZED & WELL FUNDED

NATION-STATE SPONSORED
ESCALATE SOPHISTICATION OF TACTICS AS NEEDED
FOCUSED ON ACHIEVING THEIR GOAL

IF YOU KICK THEM OUT THEY WILL RETURN

HAVE SPECIFIC OBJECTIVES
AIM AT LONG-TERM OCCUPATION
PERSISTENCE TOOLS ENSURE ONGOING ACCESS
Managing the Threat

Leverage Threat Intelligence

- Military-style intelligence applied to cyber
- Government-level ‘apparatus’
- Structured
- Years of best practice
- Intelligence reports (mainly) for operational decision making and to inform policy

- Corporate-style IT security approach to threat intel
- Blinky boxes, firewalls, IDS, IR, etc.
- Ad-hoc
- Inventing practice as we go
- Intelligence reports (mainly) for pretty dashboards to management to justify budget
Threat intelligence types and Sources

Strategic
- High level info on changing risks

Tactical
- Attacker Tools
- Tactics, Procedures

Operational
- Incoming attacks against company or industry

Technical
- Indicators of Compromise

OSINT Open Source Intelligence
- Derived from open sources (e.g. mainstream media, Internet forums, paste sites, etc.)
- **Pros**: good for ‘context’ and ‘big picture’
- **Cons**: multiple languages, interpretation, noise

TECHINT Technical Intelligence
- Technical indicators (e.g. IP addresses, hashes, domains, tools & techniques)
- **Pros**: easy to consume and drive automation
- **Cons**: difficult to ‘contextualize’

SIGINT Signals Intelligence
- Derived from analysis of communications, often in one’s own environment
- **Pros**: low noise; if you’re seeing it, you’re experiencing it
- **Cons**: requires extensive apparatus
Cyberattack lifecycle

- Describes the stages that an adversary must go through in order to realize their goals against their target(s).
- From defender’s point of view, represents the many ways we can disrupt the adversary.

The MITRE Corporate Cyber Attack Lifecycle
OSINT

- Paste sites and underground forums can be rich sources of information
- Perform your own reconnaissance… what can you find about you?

TECHINT

- IP addresses of adversary command-and-control infrastructures
- E-mail addresses of targeted staff members
- Your own external footprint… what’s out there vs. what we thought was out there?
- Proactively look for vulnerabilities and technical weaknesses

APPLICATIONS

- Target lists of IP addresses, domain names, email addresses, etc. to feed monitoring
- Discover ‘rogue’ or ‘shadow IT’ services to determine where security monitoring / response coverage gaps might exist
OSINT

• Attacker’s tools, techniques and procedures (TTPs) may have been reported (semi) publicly
• Security researchers posting proof-of-concept code
• Adversaries sometimes let their code slip!

TECHINT

• Many attacks leverage known tools… so why not acquire them?
• What fingerprints can identify a tool, or technique?

APPLICATIONS

• Download attacker tools: maybe work with your pentesting team and build detections for common tools (e.g. mimikatz, PowerShell Empire, etc.)
• Proof-of-concept code can help highlight where vulnerability exists… can inform business proactively of need to be vigilant
OSINT
- Research delivery mechanisms
- Malware reports, reverse engineering write-ups, etc.

TECHINT
- Malware signatures, hashes
- IP addresses of delivery mechanisms

SIGINT
- Monitor incoming email
- Enable a reporting mechanism for staff to report malicious email

APPLICATIONS
- Ingest high-confidence intel into defensive controls, like firewalls, IDS/IPS, etc.
- Tune email infrastructure to detect/block known delivery mechanisms
TECHINT
- Attacker TTPs
- Malware signatures
- Exploitation fingerprints (e.g. file/registry artifacts, etc.)

SIGINT
- AV detections
- IDS detections
- SIEM / other monitoring detections

APPLICATIONS
- Malware signatures may enable ‘hunting’ for other infected systems
- Can initiate Incident Response with information about where to start looking
- Assist in helping to ‘scope’ the incident
TECHINT

- IP addresses of command-and-control
- C2 domains
- C2 communications protocol details

SIGINT

- Outbound communication to C2 (e.g. beaconing)

APPLICATIONS

- Create detections for certain C2 traffic patterns
- Potentially ‘spy’ on C2 traffic to understand what attackers activity is
- Possible use for blocking & tackling; disrupt C2?
- Further identify scope of a potential incursion
OSINT
- Attacker data dumps – aka ‘loot’
- Attempts to sell or fence data (cash out)
- Boasting & bragging

TECHINT
- Details of exfiltration methods
- Forensic artifacts

SIGINT
- Attacker ‘fingerprints’
- C2 and exfiltration communications

APPLICATIONS
- Credentials of compromised users – can alert and take action (e.g. password reset)
- Clearer view of what extent of compromise may be (e.g. data accessed or modified)
- Input to ‘remediation activities’ to block the attacker
OSINT
- Uncover persistence mechanisms and approaches (through research)
- Identify C2 infrastructure

SIGINT
- Compare activity against baseline ‘normal’
- Use of common tools, by uncommon users of those tools (e.g. psexec, PowerShell, etc.)

APPLICATION
- Pinpoint ‘hotspots’ to investigate for signs of malicious activity
- Round-out identification of all access mechanisms ready for remediation
Overarching goals:

- support informed decision making; clarify the risk landscape
- prevent or decrease the time to detect an attack
- augment incident response capability; facilitate investigation of an attack
- improve information security management practices
3 points in conclusion

1. The cybersecurity threat is real, co-ordinated and happening now – across all industries

2. Cybersecurity intelligence can help individual organisations address and respond to threats,

3. Industry-wide shared intelligence is most helpful to protect our industry

Get involved… share your cyber threat intelligence
Any Questions